Jensen measures and annihilators of holomorphic functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced functions and Jensen measures

Let φ be a locally upper bounded Borel measurable function on a Greenian open set Ω in Rd and, for every x ∈ Ω, let vφ(x) denote the infimum of the integrals of φ with respect to Jensen measures for x on Ω. Twenty years ago, B.J. Cole and T.J. Ransford proved that vφ is the supremum of all subharmonic minorants of φ on X and that the sets {vφ < t}, t ∈ R, are analytic. In this paper, a differen...

متن کامل

Nearly hyperharmonic functions and Jensen measures

Let (X,H) be a P-harmonic space and assume for simplicity that constants are harmonic. Given a numerical function φ on X which is locally lower bounded, let Jφ(x) := sup{ ∫ ∗ φdμ(x) : μ ∈ Jx(X)}, x ∈ X, where Jx(X) denotes the set of all Jensen measures μ for x, that is, μ is a compactly supported measure on X satisfying ∫ u dμ ≤ u(x) for every hyperharmonic function on X. The main purpose of t...

متن کامل

Jensen measures without regularity

In this note we construct Swiss cheeses X such that R(X) is non-regular but such that R(X) has no non-trivial Jensen measures. We also construct a non-regular uniform algebra with compact, metrizable character space such that every point of the character space is a peak point. In [Co] Cole gave a counterexample to the peak point conjecture by constructing a non-trivial uniform algebra A with co...

متن کامل

Monotonicity and holomorphic functions

This is a survey on some recent works, mainly by the author on the relation between holomorphic functions on Kähler manifolds, monotonicity and the geometry of complex manifolds. We also use this opportunity to give details of a sketched step in the proof of a previously established result. Math Subject Classifications. Primary: 58G11, 53C44.

متن کامل

From Holomorphic Functions to Holomorphic Sections

It is a pleasure to have the opportunity in the graduate colloquium to introduce my research field. I am a differential geometer. To be more precise, I am a complex differential geometer, although I am equally interested in real differential geometry. To many people, geometry is a kind of mathematics that is related to length, area, volume, etc. For the Euclidean geometry, this is indeed the ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2009

ISSN: 0019-2082

DOI: 10.1215/ijm/1266934798